Received: 4 February 2013

Revised: 25 April 2013

Rapid Commun. Mass Spectrom. 2013, 27, 1631-1642 (wileyonlinelibrary.com) DOI: 10.1002/rcm.6609

Clumped isotope analysis of carbonates: comparison of two different acid digestion techniques

Ulrike Wacker^{1*}, Jens Fiebig^{1,2} and Bernd R. Schoene³

¹Institute of Geosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany ²Biodiversity and Climate Research Center, Senckenberganlage 25, 60325 Frankfurt am Main, Germany ³Department of Applied and Analytical Paleontology (INCREMENTS), Earth System Science Research Center, Institute of Geosciences, University of Mainz, Johann-Joachim-Becherweg 21, 55128 Mainz, Germany

RATIONALE: The kinetic nature of the phosphoric acid digestion reaction enables clumped isotope analysis of carbonates using gas source isotope ratio mass spectrometry (IRMS). In most laboratories acid digestions are performed at 25°C in sealed vessels or at 90°C in a common acid bath. Here we show that different Δ_{47} results are obtained depending on the digestion technique employed.

METHODS: Several replicates of a biogenic aragonite and NBS 19 were reacted with 104% H₃PO₄ in sealed vessels at 25°C and at 90°C using a common acid bath. The sample size varied between 4 mg and 14 mg. Purification methods that are standard for clumped isotope analyses were applied to the evolved CO₂ before measuring the abundances of masses 44 to 49 relative to a reference gas by IRMS.

RESULTS: A systematic trend to lower and more consistent Δ_{47} values is observed for reactions at 25°C if the sample size is increased. We suggest that secondary re-equilibration of evolved CO₂ or reaction intermediates with free water molecules preferentially occurs for relatively small samples (4–7 mg), finally yielding elevated Δ_{47} values compared with >7 mg aliquots. In contrast, no such sample size effect on Δ_{47} values is observed for carbonates that are digested at 90°C using the common acid bath.

CONCLUSIONS: The determination of Δ_{47} values of carbonate samples smaller than 7 mg becomes more precise and accurate if digestions are performed at 90°C. Based on our results we propose that the difference in phosphoric acid fractionation factor between 25°C and 90°C is 0.07‰ for both calcite and aragonite. Copyright © 2013 John Wiley & Sons, Ltd.

Clumped isotope analysis has recently been advanced as a new tool to reconstruct carbonate formation temperature^[1] (and references cited therein). The carbonate clumped isotope thermometer relies on the isotope exchange reaction involving the most abundant isotopologue containing two heavy isotopes Ca¹³C¹⁸O¹⁶O₂:

$$Ca^{13}C^{16}O_3 + Ca^{12}C^{18}O^{16}O_2 = Ca^{13}C^{18}O^{16}O_2 + Ca^{12}C^{16}O_3 \eqno(1)$$

At thermodynamic equilibrium the abundance of ¹³C-¹⁸O bonds in CaCO₃ is a function of the equilibrium constant of reaction (1). The equilibrium constant, in turn, largely depends on temperature^[2] and, hence, the determination of the abundance of ${}^{13}C-{}^{18}O$ bonds in the carbonate provides information about its crystallization temperature. Currently, there is no technique sensitive and precise enough to directly measure the abundance of isotopologues in carbonates participating in reaction (1). Therefore, carbonates are digested with 103% $H_3PO_4^{[3]}$ or 105% $H_3PO_4^{[4]}$ and the abundance of $^{13}C-^{18}O$ bonds within the evolved CO_2 is measured instead.

Correspondence to: U. Wacker, Institute of Geosciences, Goethe-University, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.

E-mail: u.wacker@em.uni-frankfurt.de

Fortunately, the acid digestion reaction is kinetically controlled such that the concentration of ¹³C-¹⁸O bonds in the evolved CO2 remains proportional to the original abundance of corresponding bonds in the carbonate lattice.^[3,5,6]

The temperature dependency of reaction (1) is expressed by Δ_{47} which quantifies the deviation of the abundances of isotopologues of a sample gas from a theoretical random distribution. For this purpose, measured R⁴⁷, R⁴⁶ and R⁴⁵ values are compared with their corresponding stochastic distribution ratios (\mathbb{R}^{47^*} , \mathbb{R}^{46^*} , \mathbb{R}^{45^*}) where $\mathbb{R}^i = m_i/m_{44}$:

$$\Delta_{47} = \left[\left(R^{47} / R^{47^*} - 1 \right) - \left(R^{46} / R^{46^*} - 1 \right) - \left(R^{45^*} / R^{45^*} - 1 \right) \right] \\ * 1000(\%) \tag{2}$$

A number of calibrations of the carbonate clumped isotope thermometer have been published, including those for synthetic and biogenic minerals,^[3,7–10] as well as speleothems.^[11,12] Several modern biogenic carbonates for which growth temperatures have been determined independently confirm the relationship between T_{growth} and Δ_{47} of synthetic carbonates reported by Ghosh *et al.*^[3] Amongst these are mollusks, brachiopods, corals, otholiths, foraminifera and coccoliths (see^[1,13] for an overview). As a consequence, most authors refer to the Ghosh *et al.*^[3] line when applying the Δ_{47} -thermometer to fossil material (e.g.,^[1,13,14]). However, discrepant results have also become